應用

技術

物聯網世界 >> 物聯網新聞 >> 物聯網熱點新聞
企業(yè)注冊個人注冊登錄

神經網絡與“老式AI”結合,MIT和IBM聯合解決深度學習痛點

2020-12-23 09:26 量子位

導讀:科學家用深度神經網絡來構建符號AI所需的知識庫和命題,省去了人工預設的難題,然后使用符號AI對任務進行推理。

現在的AI是神經網絡的天下,但科學家們正在嘗試將神經網絡與“老式AI”結合。

這里說的“老式AI”是上世紀70年代流行的“符號主義”。在幾十年前遭遇失敗后,“連接主義”取代其成為主流。

但是,越來越多的科學家注意到,將二者結合才會讓AI發(fā)揮出更強大的威力。

讓連接主義給符號主義“打工”

幾年前,科學家從小鴨子身上學到了一樣不尋常的東西。如果小鴨子出生后先看到的是兩個相似的物體,那么之后會對相似物體產生更多的偏好。

小鴨毫不費力地做的事情對于人工智能來說是很難的,尤其是深度神經網絡這一AI分支。

如果交給符號AI,它會怎么做?符號AI會處理物體的名稱作為知識庫,并給“相似”做出定義作為命題。

憑借其知識庫和命題,符號AI采用推理引擎的邏輯規(guī)則來回答問題。

但符號AI缺點在于,要實現更復雜的推理需要龐大的知識庫(人工構建),如果AI遇到知識庫中沒有的形狀將無法處理。

連接主義利用知識進行訓練,讓神經網絡具有學習能力,但容易受到對抗攻擊。

于是將符號主義和連接主義結合起來的混合式神經-符號AI(neurosymbolic AI)應運而生。

科學家用深度神經網絡來構建符號AI所需的知識庫和命題,省去了人工預設的難題,然后使用符號AI對任務進行推理。

解決李飛飛2016年難題

2016年,李飛飛等人提出了組合語言和基本視覺推理(CLEVR)數據集,要求AI回答由計算機生成的簡單3D形狀圖像相關問題。

使用復雜的深度神經網絡可以解決此問題。但是,IBM、MIT和DeepMind的研究人員提出了一種截然不同的解決方案,顯示出符號AI的強大能力。該方法相關論文已經被ICLR 2019收錄。

在這篇論文中,他們將問題分解為符號AI熟悉的較小部分。

這套系統(tǒng)首先查看圖像并表征3D形狀及其屬性,由此生成知識庫。然后,它將問題變成一個可以在知識庫上運行并產生答案的符號程序。

過去,在符號AI中,需要讓人類程序員去手動輸入知識庫,現在研究人員希望由神經網絡代替人類這項工作。

他們先通過使用卷積神經網絡(CNN)解決了第一個問題,識別目標的顏色、形狀、材質等屬性。

然后使用遞歸神經網絡(RNN)發(fā)現順序輸入中的模式。這個模塊負責接收自然語言問題并將其轉換為符號程序形式的問題。

整個過程類似于按需生成知識庫,并讓推理引擎在知識庫上回答問題。

最終,這種混合AI在從未見過的問題和圖像上進行測試,準確率達98.9%,擊敗了人類。人類只能回答正確92.6%的問題。

更好的是,混合AI只需要純粹深度神經網絡訓練數據的10%?;旌螦I還具有可解釋性,如果發(fā)生錯誤,則更容易發(fā)現問題所在。

挑戰(zhàn)更高難度

搞定CLEVR數據集后,現在神經-符號AI正在解決更為棘手的問題。

2019年,在李飛飛CLEVR數據集的基礎上,DeepMind、MIT、哈佛大學和IBM設計了一個更加復雜的挑戰(zhàn)CLEVRER:讓AI基于視頻而不是圖像來回答問題。

視頻中會出現CLEVR數據集中的目標類型,但是這些目標會移動甚至發(fā)生碰撞,而且問題更加棘手。

有些問題是描述性的,比如:視頻結束時有多少金屬物體在移動?

有些問題則需要預測,比如:接下來將發(fā)生哪個事件?[a]綠色圓柱體和球體碰撞,[b]綠色圓柱體與正方體碰撞。

甚至還有些問題是視頻中沒有發(fā)生的(反事實),比如:沒有青色圓柱體,將不會發(fā)生什么?[a]球體和立方體碰撞, [b]球體和青色圓柱體碰撞, [c]立方體和青色圓柱體碰撞。

對于當今的深度神經網絡來說,這種隨時間變化的因果關系是非常困難的,這主要表現在發(fā)現數據的靜態(tài)模式方面。

為了解決這個問題,團隊擴充了之前解決CLEVR的方案。

首先,神經網絡學習將視頻片段分解為目標的逐幀表示,然后被饋送到另一個神經網絡,學習分析這些目標的運動以及它們如何相互影響,并可以預測目標的運動和碰撞。

這兩個模塊共同構成了知識庫。其他兩個模塊處理問題并將其應用于生成的知識庫。

該團隊的解決方案在回答描述性問題方面的準確性約為88%,對于預測性問題的準確性約為83%,對于反事實問題的準確性約為74%。

讓AI學會提問

提出好問題是機器在人類的另一項技能。這是一種不斷學習世界的方式,而不必等待大量的樣本。沒有任何一種機器可以接近人類提問的能力。

而神經-符號AI展現出了這方面的能力。

紐約大學Brenden Lake助理教授和他的學生Wang Ziyun構建了一種混合AI,來玩一種需要主動提問的游戲——海戰(zhàn)棋(Battleship)。

海戰(zhàn)棋是一種猜謎式的攻防游戲,一方在棋盤上隱藏自己的“戰(zhàn)艦”(長度不等),另一方負責攻擊。

攻擊方可以翻看某個方塊下是否有“戰(zhàn)艦”的一部分,或者直接向對方提問:“船有多長”、“所有三艘船的尺寸都一樣嗎”,諸如此類的問題 。以此來猜測船只的位置。

Lake和Wang分別用兩種不同方式來訓練游戲AI。

一種是監(jiān)督學習,向神經網絡展示棋盤和人類提出的好問題。最終神經網絡學會了提問,但是很少有創(chuàng)造力。

另一種是強化學習。在這種訓練中,每當神經網絡提出一個有助于找到戰(zhàn)艦的問題時,就會得到獎勵。

神經網絡最終學會了提出正確的問題,既有用又富有創(chuàng)造力。

Lake以前曾使用純粹的符號方法解決了該問題,對于給定的棋盤狀態(tài),符號AI必須在巨大空間中搜索一個好問題,這讓它變得極其緩慢。

但是,神經-符號AI的速度非常快。經過訓練后,深度神經網絡在產生問題方面遠遠勝過純粹的符號AI。

下一步:自動駕駛

MIT-IBM Watson AI實驗室的David Cox團隊希望將這種混合AI用于自動駕駛技術。

自動駕駛AI需要神經網絡經過訓練來識別其環(huán)境中的物體,并采取適當的措施。如果神經網絡在訓練中做錯了什么,例如撞到行人,就會受到懲罰。

另一位小組成員Nathan Fulton解釋這種機制:“為了學會不做壞事,它必須做壞事,體驗過那些壞事,然后在做壞事之前找出30個步驟,防止自己陷入困境?!?/p>

因此,AI學習安全駕駛需要大量的訓練數據,而這些“壞事”讓AI很難在現實世界中訓練出來。

Fulton和他的同事正在研究一種神經-符號AI方法,克服這種局限性。AI的符號部分對現實世界的某些危險行為做出限制,來約束深度網絡的行為。

從一開始就排除某些選擇,這種簡單的符號干預大大減少了訓練AI所需的數據量。

“如果智能體不需要遇到一堆壞狀態(tài),那么它就只需要更少的數據,”Fulton說。

盡管該項目仍未準備好在實驗室外使用,但Cox設想了一個未來,具有神經-符號AI的汽車將可以在現實世界中學習,而符號組件將成為防止不良駕駛的保障。

原文地址:

https://knowablemagazine.org/article/technology/2020/what-is-neurosymbolic-ai

論文地址:

https://arxiv.org/abs/1910.01442